L 13(1):391. three. Cox AD, Der CJ (2010) Ras history: The saga μ Opioid Receptor/MOR

L 13(1):391. three. Cox AD, Der CJ (2010) Ras history: The saga μ Opioid Receptor/MOR Modulator Biological Activity continues. Tiny GTPases 1(1):27. four. Biou V, Cherfils J (2004) Structural principles for the multispecificity of compact GTPbinding proteins. Biochemistry 43(22):6833840. five. Cherfils J, Zeghouf M (2011) Chronicles on the GTPase switch. Nat Chem Biol 7(8): 49395. 6. Mor A, Philips MR (2006) Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24:77100. 7. Arozarena I, Calvo F, Crespo P (2011) Ras, an actor on lots of stages: Posttranslational modifications, localization, and site-specified events. Genes Cancer 2(3):18294. eight. Rocks O, Peyker A, Bastiaens PIH (2006) Spatio-temporal segregation of Ras signals: One ship, 3 anchors, numerous harbors. Curr Opin Cell Biol 18(four):35157. 9. Hancock JF (2003) Ras proteins: Distinctive signals from diverse places. Nat Rev Mol Cell Biol 4(five):37384. ten. Abankwa D, Gorfe AA, Hancock JF (2007) Ras nanoclusters: Molecular structure and assembly. Semin Cell Dev Biol 18(5):59907. 11. Roy S, et al. (1999) Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1(two):9805. 12. Roy S, et al. (2005) Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Mol Cell Biol 25(15):6722733. 13. Rotblat B, et al. (2004) Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol Cell Biol 24(15):6799810. 14. Prior IA, et al. (2001) GTP-dependent segregation of H-ras from lipid rafts is needed for biological activity. Nat Cell Biol three(four):36875. 15. Thapar R, Williams JG, Campbell SL (2004) NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation. J Mol Biol 343(5):1391408. 16. Meister A, et al. (2006) Insertion of lipidated Ras proteins into lipid monolayers studied by infrared reflection absorption spectroscopy (IRRAS). Biophys J 91(4): 1388401. 17. Kapoor S, et al. (2012) Revealing conformational substates of lipidated N-Ras protein by pressure modulation. Proc Natl Acad Sci USA 109(two):46065. 18. Gorfe AA, Hanzal-Bayer M, Abankwa D, Hancock JF, McCammon JA (2007) Structure and Tyk2 Inhibitor custom synthesis dynamics in the full-length lipid-modified H-Ras protein within a 1,2-dimyristoylglycero3-phosphocholine bilayer. J Med Chem 50(4):67484. 19. Abankwa D, et al. (2008) A novel switch area regulates H-ras membrane orientation and signal output. EMBO J 27(5):72735. 20. Abankwa D, Gorfe AA, Inder K, Hancock JF (2010) Ras membrane orientation and nanodomain localization produce isoform diversity. Proc Natl Acad Sci USA 107(three): 1130135. 21. Gorfe AA, Grant BJ, McCammon JA (2008) Mapping the nucleotide and isoformdependent structural and dynamical attributes of Ras proteins. Structure 16(six):88596. 22. Grant BJ, McCammon JA, Gorfe AA (2010) Conformational choice in G-proteins: Lessons from Ras and Rho. Biophys J 99(11):L87 89. 23. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118(Pt five):84346. 24. Zhang B, Zheng Y (1998) Adverse regulation of Rho household GTPases Cdc42 and Rac2 by homodimer formation. J Biol Chem 273(40):257285733. 25. Zhang B, Gao Y, Moon SY, Zhang Y, Zheng Y (2001) Oligomerization of Rac1 gtpase mediated by the carboxyl-terminal polybasic domain. J Biol Chem 276(12):8958967. 26. Kang PJ, B en L, Hariharan S, Park H-O (2010) The Rsr1/Bud1 GTPase interacts with itself along with the Cdc42 GTPase in the course of bud-site choice and polarity estab.