Integrate the function”, f_]), Show([“Integrating the function”, f_, “with respect to variable”, u, “we get”, INT(f_,u)]), Display([“Considering the Compound 48/80 Cancer limits of integration for this variable, we get”,I1_]), Show([“Integrating the function”, I1_, “with respect to variable”, v, “we get”, INT(I1_,v)]), Show([“Considering the limits of integration for this variable, we get”,I2_]), Display([“Finally, integrating this result with respect to variable”, w, “the outcome is”, INT(I2_,w)]), Display(“Considering the limits of integration, the final outcome is”) ) ), I1_:=INT(I2_,w,w1,w2), If((POSITION(x,VARIABLES(I1_)) or POSITION(y,VARIABLES(I1_)) or POSITION(z,VARIABLES(I1_)) or POSITION(u,VARIABLES(I1_)) or POSITION(v,VARIABLES(I1_)) or POSITION(w,VARIABLES(I1_))) /=false, RETURN [I1_,”Seclidemstat Autophagy WARNING!: SUSPICIOUS Result. Perhaps THE INTEGRATION ORDER IS Wrong OR THE VARIABLES Transform HAS NOT BEEN Performed Within the LIMITS OF INTEGRATION”] ), RETURN I1_TripleSpherical(f,u,u1,u2,v,v1,v2,w,w1,w2,myTheory:=Theory, myStepwise:=Stepwise,myx:=x,myy:=y,myz:=z,f_,I1_,I2_):= Prog( f_:= rho^2 cos(phi) SUBST(f, [myx,myy,myz], [rho cos(phi) cos(theta), rho cos(phi) sin(theta), rho sin(phi)]), If(myTheory, Prog( Show(“Spherical coordinates are useful when the expression x^2y^2z^2 appears in the function to become integrated”), Show(“or inside the area of integration.”), Show(“A triple integral in spherical coordinates is computed by indicates of three definite integrals inside a given order.”), Display(“Previously, the modify of variables to spherical coordinates must be performed.”) ) ), I1_:=INT(f_,u,u1,u2), I2_:=INT(I1_,v,v1,v2), If (myStepwise, Prog( Show([“Let us look at the spherical coordinates change”, myx, “=rho cos(phi) cos(theta)”, myy, “=rho cos(phi) sin(theta)”, myz, “=rho sin(phi)”]), Display([“The very first step may be the substitution of this variable change in function”, f, “and multiply this outcome by the Jacobian rho^2 cos(phi).”]), Show([“In this case, the substitutions lead to integrateMathematics 2021, 9,26 of)the function”, f_]), Show([“Integrating the function”, f_, “with respect to variable”, u, “we get”, INT(f_,u)]), Show([“Considering the limits of integration for this variable, we get”,I1_]), Display([“Integrating the function”, I1_, “with respect to variable”, v, “we get”, INT(I1_,v)]), Show([“Considering the limits of integration for this variable, we get”,I2_]), Show([“Finally, integrating this outcome with respect to variable”, w, “the result is”, INT(I2_,w)]), Display(“Considering the limits of integration, the final outcome is”) ) ), I1_:=INT(I2_,w,w1,w2), If((POSITION(x,VARIABLES(I1_)) or POSITION(y,VARIABLES(I1_)) or POSITION(z,VARIABLES(I1_)) or POSITION(u,VARIABLES(I1_)) or POSITION(v,VARIABLES(I1_)) or POSITION(w,VARIABLES(I1_))) /=false, RETURN [I1_,”WARNING!: SUSPICIOUS Result. Maybe THE INTEGRATION ORDER IS Incorrect OR THE VARIABLES Alter HAS NOT BEEN Performed In the LIMITS OF INTEGRATION”] ), RETURN I1_Appendix A.three. Area of a Area R R2 Location(u,u1,u2,v,v1,v2,myTheory:=Theory,myStepwise:=Stepwise):= Prog( If(myTheory, Show(“The area of a area R may be computed by suggests of the double integral of function 1 over the region R.”) ), If(myStepwise, Display(“To get a stepwise resolution, run the system Double with function 1.”) ), If(myTheory or myStepwise, Display(“The area is:”) ), RETURN Double(1,u,u1,u2,v,v1,v2,false,false) ) AreaPolar(u,u1,u2,v,v1,v2,myTheory:=Theory,myStepwise:=Stepwise, myx:=x,myy:=y):= Prog( If(myTheory, DISPL.
Related Posts
Ear leukocytes from umbilical cord blood are differentiated in osteoclasts; Treatment: Opti-MEM media supplemented with
Ear leukocytes from umbilical cord blood are differentiated in osteoclasts; Treatment: Opti-MEM media supplemented with 2 FBS, 25 ng/mL M-CSF and one hundred ng/mL of RANKL with or without BMP-9 (50 or 150 ng/mL) Influence on Osteoclast Function RefsBMP-Cells: murine primary osteoclast; Remedy: 10 ng/mL of M-CSF for three days ahead of adding 30 ng/mL […]
Ryptochrome to a functionally vital distance. Sci. Rep. 4, 3845 (2014). 47. MacKerell, A. D.
Ryptochrome to a functionally vital distance. Sci. Rep. 4, 3845 (2014). 47. MacKerell, A. D. Jr., Feig, M. Brooks, C. L. III Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comp. Chem. 25, 1400?415 (2004).www.nature.com/scientificreportsOPENReceived: 11 December 2017 […]
Aluminum wire, 1.0mm (0.04in) dia, annealed, Puratronicâ„¢, 99.9995% (metals basis)
Product Name : Aluminum wire, 1.0mm (0.04in) dia, annealed, Puratronicâ„¢, 99.9995% (metals basis)Synonym: IUPAC Name : aluminiumCAS NO.:7429-90-5Molecular Weight : Molecular formula: AlSmiles: [Al]Description: Anti-Mouse CD3 Antibody PA452 PMID:23891445