Integrate the function”, f_]), Show([“Integrating the function”, f_, “with respect to variable”, u, “we get”, INT(f_,u)]), Display([“Considering the Compound 48/80 Cancer limits of integration for this variable, we get”,I1_]), Show([“Integrating the function”, I1_, “with respect to variable”, v, “we get”, INT(I1_,v)]), Show([“Considering the limits of integration for this variable, we get”,I2_]), Display([“Finally, integrating this result with respect to variable”, w, “the outcome is”, INT(I2_,w)]), Display(“Considering the limits of integration, the final outcome is”) ) ), I1_:=INT(I2_,w,w1,w2), If((POSITION(x,VARIABLES(I1_)) or POSITION(y,VARIABLES(I1_)) or POSITION(z,VARIABLES(I1_)) or POSITION(u,VARIABLES(I1_)) or POSITION(v,VARIABLES(I1_)) or POSITION(w,VARIABLES(I1_))) /=false, RETURN [I1_,”Seclidemstat Autophagy WARNING!: SUSPICIOUS Result. Perhaps THE INTEGRATION ORDER IS Wrong OR THE VARIABLES Transform HAS NOT BEEN Performed Within the LIMITS OF INTEGRATION”] ), RETURN I1_TripleSpherical(f,u,u1,u2,v,v1,v2,w,w1,w2,myTheory:=Theory, myStepwise:=Stepwise,myx:=x,myy:=y,myz:=z,f_,I1_,I2_):= Prog( f_:= rho^2 cos(phi) SUBST(f, [myx,myy,myz], [rho cos(phi) cos(theta), rho cos(phi) sin(theta), rho sin(phi)]), If(myTheory, Prog( Show(“Spherical coordinates are useful when the expression x^2y^2z^2 appears in the function to become integrated”), Show(“or inside the area of integration.”), Show(“A triple integral in spherical coordinates is computed by indicates of three definite integrals inside a given order.”), Display(“Previously, the modify of variables to spherical coordinates must be performed.”) ) ), I1_:=INT(f_,u,u1,u2), I2_:=INT(I1_,v,v1,v2), If (myStepwise, Prog( Show([“Let us look at the spherical coordinates change”, myx, “=rho cos(phi) cos(theta)”, myy, “=rho cos(phi) sin(theta)”, myz, “=rho sin(phi)”]), Display([“The very first step may be the substitution of this variable change in function”, f, “and multiply this outcome by the Jacobian rho^2 cos(phi).”]), Show([“In this case, the substitutions lead to integrateMathematics 2021, 9,26 of)the function”, f_]), Show([“Integrating the function”, f_, “with respect to variable”, u, “we get”, INT(f_,u)]), Show([“Considering the limits of integration for this variable, we get”,I1_]), Display([“Integrating the function”, I1_, “with respect to variable”, v, “we get”, INT(I1_,v)]), Show([“Considering the limits of integration for this variable, we get”,I2_]), Show([“Finally, integrating this outcome with respect to variable”, w, “the result is”, INT(I2_,w)]), Display(“Considering the limits of integration, the final outcome is”) ) ), I1_:=INT(I2_,w,w1,w2), If((POSITION(x,VARIABLES(I1_)) or POSITION(y,VARIABLES(I1_)) or POSITION(z,VARIABLES(I1_)) or POSITION(u,VARIABLES(I1_)) or POSITION(v,VARIABLES(I1_)) or POSITION(w,VARIABLES(I1_))) /=false, RETURN [I1_,”WARNING!: SUSPICIOUS Result. Maybe THE INTEGRATION ORDER IS Incorrect OR THE VARIABLES Alter HAS NOT BEEN Performed In the LIMITS OF INTEGRATION”] ), RETURN I1_Appendix A.three. Area of a Area R R2 Location(u,u1,u2,v,v1,v2,myTheory:=Theory,myStepwise:=Stepwise):= Prog( If(myTheory, Show(“The area of a area R may be computed by suggests of the double integral of function 1 over the region R.”) ), If(myStepwise, Display(“To get a stepwise resolution, run the system Double with function 1.”) ), If(myTheory or myStepwise, Display(“The area is:”) ), RETURN Double(1,u,u1,u2,v,v1,v2,false,false) ) AreaPolar(u,u1,u2,v,v1,v2,myTheory:=Theory,myStepwise:=Stepwise, myx:=x,myy:=y):= Prog( If(myTheory, DISPL.
Related Posts
Nshipbetween nPower and action choice because the finding out history improved, this
Nshipbetween nPower and action selection because the mastering history enhanced, this does not necessarily mean that the establishment of a studying history is required for nPower to predict action choice. Outcome predictions is usually enabled by way of approaches other than action-outcome studying (e.g., telling men and women what will happen) and such manipulations might, […]
Or increasing awareness of and access to resources needed to prevent
Or increasing awareness of and access to resources needed to prevent infection or provide testing or care for the infected. In general, such efforts require a significant and long-term commitment of resources to achieve measurable outcomes. In some cases, because of the complex inputs in multilevel or structural interventions and the potential for numerous unanticipated […]
Kisspeptin-10, rat
Product Name : Kisspeptin-10, ratDescription:Kisspeptin-10, rat is a potent vasoconstrictor and inhibitor of angiogenesis. Kisspeptin-10, rat is a ligand for the rodent kisspeptin receptor (KISS1, GPR54). Kisspeptin-10 reduces Methotrexate-induced reproductive toxicity as a potential antioxidant compound.CAS: 478507-53-8Molecular Weight:1318.44Formula: C63H83N17O15Chemical Name: (2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-carbamoylpropanamido]-3-(1H-indol-3-yl)propanamido]-N-[(1S)-1-{[(1S)-1-[({[(1S)-1-{[(1S)-1-{[(1S)-1-carbamoyl-2-(4-hydroxyphenyl)ethyl]carbamoyl}-4-[(diaminomethylidene)amino]butyl]carbamoyl}-3-methylbutyl]carbamoyl}methyl)carbamoyl]-2-phenylethyl]carbamoyl}-2-hydroxyethyl]butanediamideSmiles : CC(C)C[C@H](NC(=O)CNC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC1=CNC2=CC=CC=C12)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(N)=OInChiKey: HVPGTDOCSYBNFC-INXYWQKQSA-NInChi : InChI=1S/C63H83N17O15/c1-33(2)23-45(58(91)74-43(13-8-22-70-63(68)69)57(90)75-44(54(67)87)25-36-16-20-39(83)21-17-36)73-53(86)31-72-56(89)46(26-34-9-4-3-5-10-34)77-62(95)50(32-81)80-61(94)49(29-52(66)85)79-59(92)47(27-37-30-71-42-12-7-6-11-40(37)42)78-60(93)48(28-51(65)84)76-55(88)41(64)24-35-14-18-38(82)19-15-35/h3-7,9-12,14-21,30,33,41,43-50,71,81-83H,8,13,22-29,31-32,64H2,1-2H3,(H2,65,84)(H2,66,85)(H2,67,87)(H,72,89)(H,73,86)(H,74,91)(H,75,90)(H,76,88)(H,77,95)(H,78,93)(H,79,92)(H,80,94)(H4,68,69,70)/t41-,43-,44-,45-,46-,47-,48-,49-,50-/m0/s1Purity: ≥98% (or refer to the Certificate of Analysis)Shipping Condition: […]