Integrate the function”, f_]), Show([“Integrating the function”, f_, “with respect to variable”, u, “we get”, INT(f_,u)]), Display([“Considering the Compound 48/80 Cancer limits of integration for this variable, we get”,I1_]), Show([“Integrating the function”, I1_, “with respect to variable”, v, “we get”, INT(I1_,v)]), Show([“Considering the limits of integration for this variable, we get”,I2_]), Display([“Finally, integrating this result with respect to variable”, w, “the outcome is”, INT(I2_,w)]), Display(“Considering the limits of integration, the final outcome is”) ) ), I1_:=INT(I2_,w,w1,w2), If((POSITION(x,VARIABLES(I1_)) or POSITION(y,VARIABLES(I1_)) or POSITION(z,VARIABLES(I1_)) or POSITION(u,VARIABLES(I1_)) or POSITION(v,VARIABLES(I1_)) or POSITION(w,VARIABLES(I1_))) /=false, RETURN [I1_,”Seclidemstat Autophagy WARNING!: SUSPICIOUS Result. Perhaps THE INTEGRATION ORDER IS Wrong OR THE VARIABLES Transform HAS NOT BEEN Performed Within the LIMITS OF INTEGRATION”] ), RETURN I1_TripleSpherical(f,u,u1,u2,v,v1,v2,w,w1,w2,myTheory:=Theory, myStepwise:=Stepwise,myx:=x,myy:=y,myz:=z,f_,I1_,I2_):= Prog( f_:= rho^2 cos(phi) SUBST(f, [myx,myy,myz], [rho cos(phi) cos(theta), rho cos(phi) sin(theta), rho sin(phi)]), If(myTheory, Prog( Show(“Spherical coordinates are useful when the expression x^2y^2z^2 appears in the function to become integrated”), Show(“or inside the area of integration.”), Show(“A triple integral in spherical coordinates is computed by indicates of three definite integrals inside a given order.”), Display(“Previously, the modify of variables to spherical coordinates must be performed.”) ) ), I1_:=INT(f_,u,u1,u2), I2_:=INT(I1_,v,v1,v2), If (myStepwise, Prog( Show([“Let us look at the spherical coordinates change”, myx, “=rho cos(phi) cos(theta)”, myy, “=rho cos(phi) sin(theta)”, myz, “=rho sin(phi)”]), Display([“The very first step may be the substitution of this variable change in function”, f, “and multiply this outcome by the Jacobian rho^2 cos(phi).”]), Show([“In this case, the substitutions lead to integrateMathematics 2021, 9,26 of)the function”, f_]), Show([“Integrating the function”, f_, “with respect to variable”, u, “we get”, INT(f_,u)]), Show([“Considering the limits of integration for this variable, we get”,I1_]), Display([“Integrating the function”, I1_, “with respect to variable”, v, “we get”, INT(I1_,v)]), Show([“Considering the limits of integration for this variable, we get”,I2_]), Show([“Finally, integrating this outcome with respect to variable”, w, “the result is”, INT(I2_,w)]), Display(“Considering the limits of integration, the final outcome is”) ) ), I1_:=INT(I2_,w,w1,w2), If((POSITION(x,VARIABLES(I1_)) or POSITION(y,VARIABLES(I1_)) or POSITION(z,VARIABLES(I1_)) or POSITION(u,VARIABLES(I1_)) or POSITION(v,VARIABLES(I1_)) or POSITION(w,VARIABLES(I1_))) /=false, RETURN [I1_,”WARNING!: SUSPICIOUS Result. Maybe THE INTEGRATION ORDER IS Incorrect OR THE VARIABLES Alter HAS NOT BEEN Performed In the LIMITS OF INTEGRATION”] ), RETURN I1_Appendix A.three. Area of a Area R R2 Location(u,u1,u2,v,v1,v2,myTheory:=Theory,myStepwise:=Stepwise):= Prog( If(myTheory, Show(“The area of a area R may be computed by suggests of the double integral of function 1 over the region R.”) ), If(myStepwise, Display(“To get a stepwise resolution, run the system Double with function 1.”) ), If(myTheory or myStepwise, Display(“The area is:”) ), RETURN Double(1,u,u1,u2,v,v1,v2,false,false) ) AreaPolar(u,u1,u2,v,v1,v2,myTheory:=Theory,myStepwise:=Stepwise, myx:=x,myy:=y):= Prog( If(myTheory, DISPL.
Related Posts
The authors didn’t investigate the mechanism of miRNA secretion. Some
The authors did not investigate the mechanism of miRNA secretion. Some studies have also compared adjustments inside the amount of circulating miRNAs in blood samples obtained just before or immediately after surgery (Table 1). A four-miRNA signature (miR-107, miR-148a, miR-223, and miR-338-3p) was identified in a a0023781 as CPI-455 biomarkers for detecting a wide array […]
In make contact with with other nations, if at all. This pattern of interactions creates
In make contact with with other nations, if at all. This pattern of interactions creates homogeneous subnetworks where new suggestions aren’t becoming exchanged, and nations with similar opinions only communicate with other people that already share their beliefs. To test this, we performed a very simple linear regression evaluation to examine if the difference in […]
Danger in the event the typical score in the cell is above the
Danger in the event the typical score in the cell is above the imply score, as low danger otherwise. Cox-MDR In an additional line of extending GMDR, survival information could be analyzed with Cox-MDR [37]. The continuous survival time is transformed into a dichotomous attribute by Fexaramine thinking of the martingale residual from a Cox […]