Integrate the function”, f_]), Show([“Integrating the function”, f_, “with respect to variable”, u, “we get”, INT(f_,u)]), Display([“Considering the Compound 48/80 Cancer limits of integration for this variable, we get”,I1_]), Show([“Integrating the function”, I1_, “with respect to variable”, v, “we get”, INT(I1_,v)]), Show([“Considering the limits of integration for this variable, we get”,I2_]), Display([“Finally, integrating this result with respect to variable”, w, “the outcome is”, INT(I2_,w)]), Display(“Considering the limits of integration, the final outcome is”) ) ), I1_:=INT(I2_,w,w1,w2), If((POSITION(x,VARIABLES(I1_)) or POSITION(y,VARIABLES(I1_)) or POSITION(z,VARIABLES(I1_)) or POSITION(u,VARIABLES(I1_)) or POSITION(v,VARIABLES(I1_)) or POSITION(w,VARIABLES(I1_))) /=false, RETURN [I1_,”Seclidemstat Autophagy WARNING!: SUSPICIOUS Result. Perhaps THE INTEGRATION ORDER IS Wrong OR THE VARIABLES Transform HAS NOT BEEN Performed Within the LIMITS OF INTEGRATION”] ), RETURN I1_TripleSpherical(f,u,u1,u2,v,v1,v2,w,w1,w2,myTheory:=Theory, myStepwise:=Stepwise,myx:=x,myy:=y,myz:=z,f_,I1_,I2_):= Prog( f_:= rho^2 cos(phi) SUBST(f, [myx,myy,myz], [rho cos(phi) cos(theta), rho cos(phi) sin(theta), rho sin(phi)]), If(myTheory, Prog( Show(“Spherical coordinates are useful when the expression x^2y^2z^2 appears in the function to become integrated”), Show(“or inside the area of integration.”), Show(“A triple integral in spherical coordinates is computed by indicates of three definite integrals inside a given order.”), Display(“Previously, the modify of variables to spherical coordinates must be performed.”) ) ), I1_:=INT(f_,u,u1,u2), I2_:=INT(I1_,v,v1,v2), If (myStepwise, Prog( Show([“Let us look at the spherical coordinates change”, myx, “=rho cos(phi) cos(theta)”, myy, “=rho cos(phi) sin(theta)”, myz, “=rho sin(phi)”]), Display([“The very first step may be the substitution of this variable change in function”, f, “and multiply this outcome by the Jacobian rho^2 cos(phi).”]), Show([“In this case, the substitutions lead to integrateMathematics 2021, 9,26 of)the function”, f_]), Show([“Integrating the function”, f_, “with respect to variable”, u, “we get”, INT(f_,u)]), Show([“Considering the limits of integration for this variable, we get”,I1_]), Display([“Integrating the function”, I1_, “with respect to variable”, v, “we get”, INT(I1_,v)]), Show([“Considering the limits of integration for this variable, we get”,I2_]), Show([“Finally, integrating this outcome with respect to variable”, w, “the result is”, INT(I2_,w)]), Display(“Considering the limits of integration, the final outcome is”) ) ), I1_:=INT(I2_,w,w1,w2), If((POSITION(x,VARIABLES(I1_)) or POSITION(y,VARIABLES(I1_)) or POSITION(z,VARIABLES(I1_)) or POSITION(u,VARIABLES(I1_)) or POSITION(v,VARIABLES(I1_)) or POSITION(w,VARIABLES(I1_))) /=false, RETURN [I1_,”WARNING!: SUSPICIOUS Result. Maybe THE INTEGRATION ORDER IS Incorrect OR THE VARIABLES Alter HAS NOT BEEN Performed In the LIMITS OF INTEGRATION”] ), RETURN I1_Appendix A.three. Area of a Area R R2 Location(u,u1,u2,v,v1,v2,myTheory:=Theory,myStepwise:=Stepwise):= Prog( If(myTheory, Show(“The area of a area R may be computed by suggests of the double integral of function 1 over the region R.”) ), If(myStepwise, Display(“To get a stepwise resolution, run the system Double with function 1.”) ), If(myTheory or myStepwise, Display(“The area is:”) ), RETURN Double(1,u,u1,u2,v,v1,v2,false,false) ) AreaPolar(u,u1,u2,v,v1,v2,myTheory:=Theory,myStepwise:=Stepwise, myx:=x,myy:=y):= Prog( If(myTheory, DISPL.
Related Posts
Urine L-FABP and the urine albumin excretion rate are plotted in
Urine L-FABP and the urine AN-3199 biological activity albumin excretion rate are plotted in Figure 1. The levels of serum L-FABP (76932-56-4 web Pearson correlation: 20.310, P,.0.001) and urine L-FABP (Pearson correlation: 20.276, P = 0.001), and the urine albumin excretion rate (Pearson correlation: 20.333, P,0.001), were significantly correlated with the eGFR. The correlations between […]
This has direct to the notion that cardiac miRNA expression profiles characterize novel and sensitive signatures of ailment, and that the focus on mRNAs spotlight networks of genes with a central position in cardiovascular disease
MicroRNAs (miRNAs) are non-coding RNA molecules of ,22 nucleotides that regulate put up-transcriptional gene expression, and above 1900 are acknowledged to exist in humans [1]. miRNAs are transcribed as precursor transcripts, which fold to kind miRNA5p:miRNA-3p stem-loop duplexes [two]. The precursor transcripts are cleaved in the nucleus by Drosha into ,70 nucleotide premiRNAs and then […]
Verlap extension PCR ofAnalysis of Recurrent Mutations in HAS1 IntronGenomic DNA
Verlap extension PCR ofAnalysis of Recurrent Mutations in HAS1 IntronGenomic DNA was prepared from PBMC using Trizol reagent (Invitrogen). HAS1 intron 3 region was amplified from 50 ng genomic DNA using 59outer SNPs/39exon4 primer set at 94uC for Table 1. Summary of primer sequences.Primer E3 E5 E5I4 59Vb-specific 59outer SNPs 39exon 4 HAS1seq59 CASIN site […]