R male and female instructors across the fields (which resulted in two z-scored variables, one for “AZD-8055 custom synthesis brilliant” and one for “genius”), and then (2) averaging male and female instructors’ standardized scores for “brilliant” and “genius” within each field (4 scores) to derive a single number–the field’s GDC-0084MedChemExpress RG7666 brilliance language score. The words “brilliant” and “genius” were chosen because they map most directly onto the intellectual traits that are prized in fields such as mathematics, physics, philosophy, etc. [1]. We found the same results, however, when we included the weaker term “smart” in the set of words denoting a brilliance focus. Thus, our results do not hinge on a particular configuration of search terms. It is also worth noting that other terms were considered but could not ultimately be used because they appeared very infrequently in the reviews (e.g., “gifted” was only used an average of 5.81 times per million words, vs. 75.10 for “brilliant” and 27.27 for “genius”) or because they do not uniquely target intellectual ability (e.g., a person can be “talented” in many ways). We should point out that, because the brilliance language score is an average of male and female instructors’ separate averages, it weights the two gender-specific scores equally, and it is thus not influenced by whether there are more male or female instructors in a field. As jasp.12117 a result, any relationships we identify between this score and fpsyg.2016.01503 women’s representation are not trivial– they are not simply the artifacts of correlating two different measures of gender diversity. The same algorithm was used to construct the composite usage score for the control superlatives “excellent” and “amazing,” which were selected because they were roughly matched in intensity with the focal terms “brilliant” and “genius” (all being very positive) and were also used relatively frequently by students. However, similar results were found forPLOS ONE | DOI:10.1371/journal.pone.0150194 March 3,6 /”Brilliant” “Genius” on RateMyProfessors Predict a Field’s Diversityanalogous, but less frequent, control superlatives such as “fantastic” and “wonderful.” Thus, the results reported below are not specific to a particular set of control terms.Academics’ Ability BeliefsThe data on academics’ ability beliefs, as well as three of the four competing hypotheses (concerning a field’s workload, relative emphasis on systemizing vs. empathizing, and selectivity) were taken from Leslie, Cimpian, et al.’s study of academics [1]. We describe these measures briefly here and list the items in Table A in the S1 File. For full details, we refer the reader to [1] and its supplemental materials (http://bit.ly/1SP8k39). To assess field-specific ability beliefs, Leslie, Cimpian, et al. asked 1820 academics from 30 disciplines (both in and beyond STEM) to rate the extent to which they, as well as other people in their field, agree with four statements concerning what is required for success in their field (e.g., “Being a top scholar of [discipline] requires a special aptitude that just can’t be taught”). Participants’ ratings were averaged to create a composite measure of each field’s ability beliefs ( = 0.90).Competing HypothesesLeslie, Cimpian, et al. [1] assessed a field’s work demands by asking participants to report the number of hours they worked in a given week, both on and off campus (see Table A in the S1 File). To assess the extent to which a field relies on systemizing versus empathizing, Leslie, Cimp.R male and female instructors across the fields (which resulted in two z-scored variables, one for “brilliant” and one for “genius”), and then (2) averaging male and female instructors’ standardized scores for “brilliant” and “genius” within each field (4 scores) to derive a single number–the field’s brilliance language score. The words “brilliant” and “genius” were chosen because they map most directly onto the intellectual traits that are prized in fields such as mathematics, physics, philosophy, etc. [1]. We found the same results, however, when we included the weaker term “smart” in the set of words denoting a brilliance focus. Thus, our results do not hinge on a particular configuration of search terms. It is also worth noting that other terms were considered but could not ultimately be used because they appeared very infrequently in the reviews (e.g., “gifted” was only used an average of 5.81 times per million words, vs. 75.10 for “brilliant” and 27.27 for “genius”) or because they do not uniquely target intellectual ability (e.g., a person can be “talented” in many ways). We should point out that, because the brilliance language score is an average of male and female instructors’ separate averages, it weights the two gender-specific scores equally, and it is thus not influenced by whether there are more male or female instructors in a field. As jasp.12117 a result, any relationships we identify between this score and fpsyg.2016.01503 women’s representation are not trivial– they are not simply the artifacts of correlating two different measures of gender diversity. The same algorithm was used to construct the composite usage score for the control superlatives “excellent” and “amazing,” which were selected because they were roughly matched in intensity with the focal terms “brilliant” and “genius” (all being very positive) and were also used relatively frequently by students. However, similar results were found forPLOS ONE | DOI:10.1371/journal.pone.0150194 March 3,6 /”Brilliant” “Genius” on RateMyProfessors Predict a Field’s Diversityanalogous, but less frequent, control superlatives such as “fantastic” and “wonderful.” Thus, the results reported below are not specific to a particular set of control terms.Academics’ Ability BeliefsThe data on academics’ ability beliefs, as well as three of the four competing hypotheses (concerning a field’s workload, relative emphasis on systemizing vs. empathizing, and selectivity) were taken from Leslie, Cimpian, et al.’s study of academics [1]. We describe these measures briefly here and list the items in Table A in the S1 File. For full details, we refer the reader to [1] and its supplemental materials (http://bit.ly/1SP8k39). To assess field-specific ability beliefs, Leslie, Cimpian, et al. asked 1820 academics from 30 disciplines (both in and beyond STEM) to rate the extent to which they, as well as other people in their field, agree with four statements concerning what is required for success in their field (e.g., “Being a top scholar of [discipline] requires a special aptitude that just can’t be taught”). Participants’ ratings were averaged to create a composite measure of each field’s ability beliefs ( = 0.90).Competing HypothesesLeslie, Cimpian, et al. [1] assessed a field’s work demands by asking participants to report the number of hours they worked in a given week, both on and off campus (see Table A in the S1 File). To assess the extent to which a field relies on systemizing versus empathizing, Leslie, Cimp.
Related Posts
Rh-PON1(wt); rh-PON1(2p) containing H115W/H134R substitutions and rh-PON1(3p)-containing H115W/H134R/R192KFigure three. Arylesterase and lactonase activities of P2Y6
Rh-PON1(wt); rh-PON1(2p) containing H115W/H134R substitutions and rh-PON1(3p)-containing H115W/H134R/R192KFigure three. Arylesterase and lactonase activities of P2Y6 Receptor Synonyms rh-PON1 enzymes. Panel A and B shows the phenyl acetate- and lactonehydrolyzing activities from the enzymes. Legends: ( ), rh-PON1(wt) and ( ), rh-PON1(7p). [Color figure is usually viewed in the on-line issue, that is readily available at […]
On of messages expressed late in pollen development could be the item of generative or
On of messages expressed late in pollen development could be the item of generative or sperm cells (Engel et al., 2003). A systematic identification of transporters is definitely an RLX-030 Inhibitor crucial 1st step to learn how transport of ions and metabolites is integrated together with the diverse phases of pollen improvement. We show that […]
On the other hand, the levels of DHAP and glycerol in the two Fad-GPDHOE traces were significantly elevated in comparison with WT (Figure S3C)
Offered that the G3P level in glycerol-dealt with vegetation is linked with modifications in root growth and each the gpdhc1 and trend-gpdh mutants are much more sensitive to glycerol as compared with wild-sort plant, we asked whether or not the overexpression of genes encoding glycerol-3-phosphate dehydrogenase would boost the tolerance to exogenous glycerol. We created […]