Owledge (http://www.webofknowledge.com) for fMRI studies of inhibited temperament available through April 2014. Search terms were: (“inhibited temperament” or “behavioral inhibition” or “behaviorally inhibited”) AND (MRI OR neuroimaging OR “brain activation” OR “brain activity”). We also included studies found by searching reference lists and manuscripts in press. Studies were eligible for inclusion if they included a comparison between individuals with an inhibited temperament and individuals with an average or uninhibited temperament. Studies had to include coordinates of their findings in either LY-2523355 chemical information Montreal Neurological Institute (MNI) or Talairach space. Two hundred and eighty-nine (289) articles were identified. Of the articles, 98 were BMS-214662 web excluded for not being an empirical study, 19 were excluded for non-human data, 85 were excluded for not including functional imaging data, 71 were excluded for not including a measure of inhibited temperament, two were excluded for containing only correlations within an inhibited group, and one study was excluded for reporting no group differences in functional activation. Data from 13 studies were included (Bar-Haim et al., 2009; Blackford et al., 2013, 2011, 2009; Clauss et al., 2014a, 2011; Guyer et al., 2006; Helfinstein et al., 2011; Jarcho et al., 2014, 2013; P ez-Edgar et al., 2007; Schwartz et al., 2012, 2003a). Coordinates were included for the contrast of inhibited temperament group versus controlAuthor Manuscript Author Manuscript Author Manuscript Author ManuscriptProg Neurobiol. Author manuscript; available in PMC 2016 April 01.Clauss et al.Pagegroup or the interaction (e.g. temperament ?emotion) if reported. Meta-analyses were conducted using GingerALE software (version 2.3.2; http://www.brainmap.org/ale), which uses an activation likelihood estimation (ALE) to test for overlap between foci across studies (Eickhoff et al., 2009). A random-effects model was used. All data were transformed to MNI space using the tal2icbm function within the GingerALE software and peak coordinates were modeled with a 3D Gaussian kernel with a FWHM of 8.5?.5 (larger FWHM for studies with fewer subjects). Convergence across all studies was calculated as the union of each individual study, with a voxel p-value of .01 and a cluster size of 25 voxels (200 mm3). There were four clusters where the inhibited temperament group had significantly greater activation than the uninhibited temperament group. The inhibited group had greater activation in the amygdala, three regions of the basal ganglia (globus pallidus, putamen, and caudate), and the middle frontal gyrus (see Table 1 and Figure 3). There were no regions where the uninhibited group had greater activation. Thus, inhibited temperament was associated with heightened activation in brain regions involved in both novelty/threat processing and reward processing/inhibitory control. Of note, these three regions–the amygdala, basal ganglia, and PFC–have been proposed to form an interconnected circuit responsible for governing motivated behaviors in healthy adults (Ernst et al., 2006; see: Ernst and Fudge, 2009). In this Triadic Model, approach behaviors are governed by the basal ganglia (reward) while avoidance is governed by the amygdala (fear); approach/avoidance behavior is regulated through complex PFC feedback loops with both of these regions. Balanced regulation of the basal ganglia and amygdala is hypothesized to be important to adaptive behavior in a variet.Owledge (http://www.webofknowledge.com) for fMRI studies of inhibited temperament available through April 2014. Search terms were: (“inhibited temperament” or “behavioral inhibition” or “behaviorally inhibited”) AND (MRI OR neuroimaging OR “brain activation” OR “brain activity”). We also included studies found by searching reference lists and manuscripts in press. Studies were eligible for inclusion if they included a comparison between individuals with an inhibited temperament and individuals with an average or uninhibited temperament. Studies had to include coordinates of their findings in either Montreal Neurological Institute (MNI) or Talairach space. Two hundred and eighty-nine (289) articles were identified. Of the articles, 98 were excluded for not being an empirical study, 19 were excluded for non-human data, 85 were excluded for not including functional imaging data, 71 were excluded for not including a measure of inhibited temperament, two were excluded for containing only correlations within an inhibited group, and one study was excluded for reporting no group differences in functional activation. Data from 13 studies were included (Bar-Haim et al., 2009; Blackford et al., 2013, 2011, 2009; Clauss et al., 2014a, 2011; Guyer et al., 2006; Helfinstein et al., 2011; Jarcho et al., 2014, 2013; P ez-Edgar et al., 2007; Schwartz et al., 2012, 2003a). Coordinates were included for the contrast of inhibited temperament group versus controlAuthor Manuscript Author Manuscript Author Manuscript Author ManuscriptProg Neurobiol. Author manuscript; available in PMC 2016 April 01.Clauss et al.Pagegroup or the interaction (e.g. temperament ?emotion) if reported. Meta-analyses were conducted using GingerALE software (version 2.3.2; http://www.brainmap.org/ale), which uses an activation likelihood estimation (ALE) to test for overlap between foci across studies (Eickhoff et al., 2009). A random-effects model was used. All data were transformed to MNI space using the tal2icbm function within the GingerALE software and peak coordinates were modeled with a 3D Gaussian kernel with a FWHM of 8.5?.5 (larger FWHM for studies with fewer subjects). Convergence across all studies was calculated as the union of each individual study, with a voxel p-value of .01 and a cluster size of 25 voxels (200 mm3). There were four clusters where the inhibited temperament group had significantly greater activation than the uninhibited temperament group. The inhibited group had greater activation in the amygdala, three regions of the basal ganglia (globus pallidus, putamen, and caudate), and the middle frontal gyrus (see Table 1 and Figure 3). There were no regions where the uninhibited group had greater activation. Thus, inhibited temperament was associated with heightened activation in brain regions involved in both novelty/threat processing and reward processing/inhibitory control. Of note, these three regions–the amygdala, basal ganglia, and PFC–have been proposed to form an interconnected circuit responsible for governing motivated behaviors in healthy adults (Ernst et al., 2006; see: Ernst and Fudge, 2009). In this Triadic Model, approach behaviors are governed by the basal ganglia (reward) while avoidance is governed by the amygdala (fear); approach/avoidance behavior is regulated through complex PFC feedback loops with both of these regions. Balanced regulation of the basal ganglia and amygdala is hypothesized to be important to adaptive behavior in a variet.
Related Posts
D allowed to adhere overnight. The following day, cells had been left untreated (A) or
D allowed to adhere overnight. The following day, cells had been left untreated (A) or incubated for six h with four g/mL human recombinant granzyme B 468, 469 (B). Soon after the incubation time period, cells were harvested and processed as described above, with 105 cells remaining stained with AlexaFluor647 Annexin V (following the manufacturer’s […]
Testing our algorithm on signaling network SN5 and SN6. Because of
Testing our algorithm on signaling network SN5 and SN6. Because of the high growth of the number of subgraphs, these large networks were tested for subgraphs of size 3, 4, and 5. The VF2 algorithm is not tested because it requires a large amount of times to detect subgraphs on the signaling network SN5 and […]
Nsch, 2010), other measures, on the other hand, are also utilized. As an example, some researchers
Nsch, 2010), other measures, even so, are also made use of. For instance, some researchers have asked participants to determine distinct chunks on the sequence using forced-choice recognition questionnaires (e.g., Frensch et al., journal.pone.0169185 nonetheless occur. Consequently, quite a few researchers use questionnaires to evaluate a person participant’s degree of conscious sequence understanding immediately after […]