The adjusted mean FEV1 for curry intake was only marginally 1.5 higher. get SMER-28 Similar SMER-28 results were observed for FEV1/FVC . See Figure 2. We further analyzed differences in pulmonary function between curry intake (at least once a month) and non-curry intake among a small number of participants who reported a history of asthma or COPD (N = 76). We found consistent results of higher mean adjusted FEV1 (b = +0.335 6 SE = 0.104, p = 0.002) and FVC ((b = +0.324 6 SE = 0.143, p = 0.027) and FEV1/FVCDiscussionIn this population-based study of Chinese middle aged and older adults, we found that the a turmeric (curcumins)-rich curry diet was significantly associated with better pulmonary function, controlling for potential confounding by known risk factors for COPD. Since it was possible that curcumin intake may be correlated with the intake of other nutrients including vitamins A, C, E and D, selenium and omega-3 PUFA, a protective effect attributed to curcumins may actually reflect the effect of another correlated antioxidant or anti-inflammatory nutrient(s), or an interaction between dietary constituents. We hence controlled for the pulmonary effects of the intakes of other anti-oxidant/antiinflammatory nutrients in multivariate analyses and found no evidence that they could explain the pulmonary effect associated with curry intake. Our results thus suggested that dietary curcumins intake in curry had a positive effect on pulmonary function independent of other anti-oxidant and anti-inflammatory micronutrients. Furthermore, the significant linear trends of pulmonary function levels associated with increasing frequencies of curry intake suggest a clear dose-effect relation. We investigated the effect of curry intake on pulmonary function among smokers and found that smokers who consumed curry showed levels of FEV1 and FEV1/FVC that were substantially higher than smokers who did not consume curry. These levels of FEV1 and FEV1/FVC among smokers who consumed curry were almost similar to the levels observed among non-smokers. Among non-smokers, the smaller differences in pulmonary function associated with curry intake were perhaps not surprising, given the high functioning level for their age and possible ceiling effects. These results suggest that the anti-oxidant and anti-inflammatory actions of curcumins in curry might be particularly effective in protecting against pulmonary damage caused by smoking. Given that smokers are exposed to large concentrations of oxidants in cigarette smoke, [35] hypothetically a stronger association of anti-oxidants with pulmonary function in smokers is expected if anti-oxidants could prevent oxidative damage. So far, very few studies possessed sufficient power to detect a statistically significant interaction of antioxidant intake with smoking. To our knowledge, only one study that analyzed a large data set in the NHANES III [22] has reported a stronger correlation of vitamin C with FEV1 in current smokers. Our study was sufficiently powered to observe the modifying effect of dietary curcumins on pulmonary function impairment associated with smoking. The strengths of the present study include its large sample size, and the selection of an older adult population who are vulnerable to the effects of oxidative injury and nutritional deficiency and were hence at increased risk of obstructive pulmonary disease. We controlled for a large number of known risk factors for COPD that were potentially confounding variables in mu.The adjusted mean FEV1 for curry intake was only marginally 1.5 higher. Similar results were observed for FEV1/FVC . See Figure 2. We further analyzed differences in pulmonary function between curry intake (at least once a month) and non-curry intake among a small number of participants who reported a history of asthma or COPD (N = 76). We found consistent results of higher mean adjusted FEV1 (b = +0.335 6 SE = 0.104, p = 0.002) and FVC ((b = +0.324 6 SE = 0.143, p = 0.027) and FEV1/FVCDiscussionIn this population-based study of Chinese middle aged and older adults, we found that the a turmeric (curcumins)-rich curry diet was significantly associated with better pulmonary function, controlling for potential confounding by known risk factors for COPD. Since it was possible that curcumin intake may be correlated with the intake of other nutrients including vitamins A, C, E and D, selenium and omega-3 PUFA, a protective effect attributed to curcumins may actually reflect the effect of another correlated antioxidant or anti-inflammatory nutrient(s), or an interaction between dietary constituents. We hence controlled for the pulmonary effects of the intakes of other anti-oxidant/antiinflammatory nutrients in multivariate analyses and found no evidence that they could explain the pulmonary effect associated with curry intake. Our results thus suggested that dietary curcumins intake in curry had a positive effect on pulmonary function independent of other anti-oxidant and anti-inflammatory micronutrients. Furthermore, the significant linear trends of pulmonary function levels associated with increasing frequencies of curry intake suggest a clear dose-effect relation. We investigated the effect of curry intake on pulmonary function among smokers and found that smokers who consumed curry showed levels of FEV1 and FEV1/FVC that were substantially higher than smokers who did not consume curry. These levels of FEV1 and FEV1/FVC among smokers who consumed curry were almost similar to the levels observed among non-smokers. Among non-smokers, the smaller differences in pulmonary function associated with curry intake were perhaps not surprising, given the high functioning level for their age and possible ceiling effects. These results suggest that the anti-oxidant and anti-inflammatory actions of curcumins in curry might be particularly effective in protecting against pulmonary damage caused by smoking. Given that smokers are exposed to large concentrations of oxidants in cigarette smoke, [35] hypothetically a stronger association of anti-oxidants with pulmonary function in smokers is expected if anti-oxidants could prevent oxidative damage. So far, very few studies possessed sufficient power to detect a statistically significant interaction of antioxidant intake with smoking. To our knowledge, only one study that analyzed a large data set in the NHANES III [22] has reported a stronger correlation of vitamin C with FEV1 in current smokers. Our study was sufficiently powered to observe the modifying effect of dietary curcumins on pulmonary function impairment associated with smoking. The strengths of the present study include its large sample size, and the selection of an older adult population who are vulnerable to the effects of oxidative injury and nutritional deficiency and were hence at increased risk of obstructive pulmonary disease. We controlled for a large number of known risk factors for COPD that were potentially confounding variables in mu.
Related Posts
An basilar motion, based on the cell’s RC time constant.
An basilar motion, based on the cell’s RC time constant. This problem has been addressed by many investigators, and many ostensible resolutions to the RC time-constant problem have been proposed (15,25,59?2). However, we must now consider the slow kinetics of prestin at physiological chloride levels that we have uncovered. This can only make matters worse. […]
Lishing.orgH. sapiensM. musculus X. tropicalis D. rerio D. melanogaster A. thaliana C. elegans S. pombeNP_NP_666319
Lishing.orgH. sapiensM. musculus X. tropicalis D. rerio D. melanogaster A. thaliana C. elegans S. pombeNP_NP_666319 AAI23910 AAIAAKNP_082564 AAI66184 NP_–95.thirteen eighty four.06 seventy seven.32 sixty three.77 55.73 32.fifty four 31.74 H. sapiensOpen Biol. 4:NP_001163084 AED95353 NP_495525 CAB16383 (pcu4)M. musculus X. tropicalis D. rerioD. melanogasterA. thaliana S. pombe C. elegansFigure 2. Phylogenetic examination of CUL4A protein in […]
Ort to assess the reproducibility and robustness of CFP and LFP
Ort to assess the reproducibility and robustness of CFP and LFP based experiments, we tested intra-assay variability in both settings by running each sample in triplicate and calculating the coefficient of variation (CV). As shown by the descriptive statistics in Fig. 2A, the average CVs for different cell populations were similar, reflecting comparable intra-assay variability […]